Cell-type-specific rescue of myosin function during Dictyostelium development defines two distinct cell movements required for culmination.

نویسندگان

  • T L Chen
  • W A Wolf
  • R L Chisholm
چکیده

Mutant Dictyostelium cells lacking any of the component polypeptides of myosin II exhibit developmental defects. To define myosin's role in establishing Dictyostelium's developmental pattern, we have rescued myosin function in a myosin regulatory light chain null mutant (mlcR-) using cell-type-specific promoters. While mlcR- cells fail to progress beyond the mound stage, expression of RLC from the prestalk promoter, ecmA, produces culminants with normal stalks but with defects in spore cell localization. When GFP-marked prestalk and prespore cells expressing ecmA-RLC are mixed with wild-type cells, the mislocalization of prestalk cells, but not prespore cells, is rescued. Time-lapse video recording of ecmA-RLC cells showed that the posterior prespore zone failed to undergo a contraction important for the upward movement of prespore cells. Prespore cells marked with green fluorescent protein (GFP) failed to move toward the tip with the spiral motion typical of wild type. In contrast, expression of RLC in prespore cells using the psA promoter produced balloon-like structures reminiscent of sorocarps but lacking stalks. GFP-labeled prespore cells showed a spiral movement toward the top of the structures. Expression of RLC from the psA promoter restores the normal localization of psA-GFP cells, but not ecmA-GFP cells. These results define two distinct, myosin-dependent movements that are required for establishing a Dictyostelium fruiting body: stalk extension and active movement of the prespore zone that ensures proper placement of the spores atop the stalk. The approach used in these studies provides a direct means of testing the role of cell motility in distinct cell types during a morphogenetic program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tail chimeras of Dictyostelium myosin II support cytokinesis and other myosin II activities but not full development.

Dictyostelium lacking myosin II cannot grow in suspension culture, develop beyond the mound stage or cap concanavalin A receptors and chemotaxis is impaired. Recently, we showed that the actin-activated MgATPase activity of myosin chimeras in which the tail domain of Dictyostelium myosin II heavy chain is replaced by the tail domain of either Acanthamoeba or chicken smooth muscle myosin II is u...

متن کامل

Targeted disruption of the Dictyostelium myosin essential light chain gene produces cells defective in cytokinesis and morphogenesis.

We have previously demonstrated that the myosin essential light chain (ELC) is required for myosin function in a Dictyostelium cell line, 7-11, in which the expression of ELC was inhibited by antisense RNA overexpression. We have now disrupted the gene encoding the ELC (mlcE) in Dictyostelium by gene targeting. The mlcE- mutants provide a clean genetic background for phenotypic analysis and bio...

متن کامل

Molecular genetic truncation analysis of filament assembly and phosphorylation domains of Dictyostelium myosin heavy chain.

Conventional myosin ('myosin II') is a major component of the cytoskeleton in a wide variety of eukaryotic cells, ranging from lower amoebae to mammalian fibroblasts and neutrophils. Gene targeting technologies available in the Dictyostelium discoideum system have provided the first genetic proof that this molecular motor protein is essential for normal cytokinesis, capping of cell surface rece...

متن کامل

The myosin I SH3 domain and TEDS rule phosphorylation site are required for in vivo function.

The class I myosins play important roles in controlling many different types of actin-based cell movements. Dictyostelium cells either lacking or overexpressing amoeboid myosin Is have significant defects in cortical activities such as pseudopod extension, cell migration, and macropinocytosis. The existence of Dictyostelium null mutants with strong phenotypic defects permits complementation ana...

متن کامل

α-catenin and IQGAP regulate myosin localization to control epithelial tube morphogenesis in Dictyostelium.

Apical actomyosin activity in animal epithelial cells influences tissue morphology and drives morphogenetic movements during development. The molecular mechanisms leading to myosin II accumulation at the apical membrane and its exclusion from other membranes are poorly understood. We show that in the nonmetazoan Dictyostelium discoideum, myosin II localizes apically in tip epithelial cells that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 125 19  شماره 

صفحات  -

تاریخ انتشار 1998